
ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2024
M. Skouras and H. Wang
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 43 (2024), Number 8

A Multi-layer Solver for XPBD

A. Mercier-Aubin P. G. Kry

McGill University, Canada

Figure 1: The pills have green parts are stiff and white parts that are soft. Due to independent rigid motions of different sliding pills, and
mixed rigid-elastic contacts, we obtain an efficient and stable simulation of this contact heavy scene.

Abstract
We present a novel multi-layer method for extended position-based dynamics that exploits a sequence of reduced models
consisting of rigid and elastic parts to speed up convergence. Taking inspiration from concepts like adaptive rigidification
and long-range constraints, we automatically generate different rigid bodies at each layer based on the current strain rate.
During the solve, the rigid bodies provide coupling between progressively less distant vertices during layer iterations, and
therefore the fully elastic iterations at the final layer start from a lower residual error. Our layered approach likewise helps with
the treatment of contact, where the mixed solves of both rigid and elastic in the layers permit fast propagation of impacts. We
show several experiments that guide the selection of parameters of the solver, including the number of layers, the iterations per
layers, as well as the choice of rigid patterns. Overall, our results show lower compute times for achieving a desired residual
reduction across a variety of simulation models and scenarios.

CCS Concepts
• Computing methodologies → Interactive simulation; Simulation by animation; Real-time simulation;

Keywords: XPBD, rigid bodies, soft bodies, multigrid, contact

1. Introduction

Real-time simulations of soft bodies is an important component
in many interactive applications, such as training simulators and
videos games. In these applications, the compute resources are
often limited, and must be shared between rendering, application
logic, and the computation of physics. Real-time applications
typically requires steady frame rates for the rendering of intri-
cate geometry often leaving tight budgets for the computation

of physics. In this setting, deformation computations must be
interactive, stable, and accurate for optimal immersion.

Step and project methods like XPBD are popular for the sim-
ulation of soft or rigid bodies as they allow fast stable simu-
lations. However, the convergence of the solver is slow due to
local propagation of information through Jacobi or Gauss-Seidel
iterations. Hence, while these methods offer fast computation
for time stepping, the slow convergence can lead to results that
poorly approximate the expected physical behaviors of a system.
To improve propagation, long-range attachments create additional

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://orcid.org/0000-0002-2668-8523
https://orcid.org/0000-0003-4176-6857


2 of 11 A. Mercier-Aubin & P.G. Kry / A Multi-layer Solver for XPBD

constraints to couple distant elements. Identifying where extra
constraints are needed can be challenging or specific to a given
scenario, and overall, the extra constraints increase the complexity
of the system and the cost of the solve.

We introduce a multi-layer method for soft body simulation.
Drawing inspiration from multigrid methods, the concepts of long-
range constraints, and adaptive rigidification, we automatically
generate various resolutions as mixes of rigid and elastic compo-
nents with varying degrees of freedom. Our work derives from an
opportunity to reduce models based on the current simulation state
rather than the geometry or representation of our models. Through
a coarse-to-fine sequence of solver iterations using these reduced
models, the different couplings of elastic and rigid parts propagate
distant information, improving the convergence of the XPBD solve.
We handle contacts as both rigid and elastic throughout a time step,
allowing efficient propagation of impulses. Our method has been
tested across a range of scenarios, including contact-rich scenarios,
purely rigid motions, and global deformation challenges. The
results demonstrate improved convergence in all of our examples.
We further explore the performance of different input parameters
such as rigid patterns, number of iterations per layer, and the
number of layers to provide deeper insights into the behavior of
our method.

2. Related Work

One of the most important contributions to physics-based ani-
mation with respect to efficient time integration is unequivocally
position-based dynamics (PBD) [MHHR07]. The method pro-
poses a Gauss-Seidel-like solve for the motions of constrained
particles by projecting linearized constraints one at a time. Ben-
der et al. [BKCW14] demonstrate the applicability of PBD
continuum elasticity simulation by modeling constraints as per-
element elastic potentials. The extended position based dynamics
(XPBD) [MMC16] framework addresses one of the early, yet major
shortcomings of traditional PBD. Without the compliance term,
elastic models are infinitely stiff and too many iterations causes
them to behave as rigid bodies. In contrast, when rigid bodies are
desired, XPBD can still be applied, noting that most of the displace-
ment occurs in the fast symplectic stepping prior to the constraint
solve, which instead deals with environmental interactions, such as
integration of joints, mixed bodies and more [MMC*20].

Multigrid solvers find solutions to systems of equations by first
eliminating, i.e., smoothing, high-frequency errors in the solution
iterates. The remaining low-frequency error is then eliminated by
solving a reduced version of the original problem, where such
low frequencies become high frequencies, revealing its recursive
structure. Applied to linear systems, a multigrid solver typically
features multiple resolutions, i.e., levels, of the full space problem
(e.g., constructed by simplification [LZBJ21]), with the intention
of doing a few Jacobi or Gauss-Seidel iterations at each level
as error smoothing agents. The exponential reduction in problem
size between the hierarchy’s levels yields fast convergence to the
solution.

Xian et al. [XTL19] present a linear multigrid solver for physics-
based animation based on projective dynamics [BML*14] using

Newton-Raphson iterations, where resolutions are created from
furthest point samplings of the high-resolution simulated mesh.
Coarser level point samples act as linear blend skinning (LBS)
handles for the immediate finer level points, with simulation mesh
vertices as the finest level. By clamping the LBS weights to
discrete binary values, they obtain restriction and prolongation
operators which encourage linear system sparsity at coarser levels,
yielding impressive computational efficiency. Unlike PBD and
XPBD [MEM*20], the projected dynamics approach is tailored to
the primal formulation.

In contrast, Müller [Mül08] proposes a non-linear multigrid
solver for PBD where each layer is similarly a coarse point
sampling of the original particle system. Here, the prolongation op-
erator consists of weighted averaging of coarse grid solutions, with
weights inversely proportional to approximate geodesic distance
between coarse parent particles and their fine children particles.
This multigrid solver goes solely from coarse to fine, approximately
solving a reduced set of constraints at each level. The proposed
scheme lends itself well to mass spring PBD deformable models,
where coarsening occurs via edge collapses. Unfortunately, it
remains unclear how to generalize the approach to the preferred
continuum constraints [TKA23].

While XPBD is a fast method for real time simulation, the local
nature of the constraint solve prevents efficient global propagation
of deformation computations, which hinders convergence. To ad-
dress this issue, long range attachements [KCM12] and long-range
constraints [MCMJ17] have been proposed. Such approaches suc-
cessfully create constraints between distant elements to explicitly
enforce the desired propagation of local elastic effects, at the cost
of added constraints. Nonetheless, the improved convergence dom-
inates the additional per-iteration overhead. We take inspiration
from this approach by using rigid bodies to improve propagation
of information across long distances. The new constraints, while
helping propagation, change the original optimization problem,
impacting the final solution. Hence, these constraints need to be
removed during the solve to obtain a ground truth simulation
and ensure correct convergence. Unlike the previous work, the
rigid bodies in our approach serve as approximate long range
constraints that accelerate the convergence across solver iterations
on a sequence of approximate systems, and these rigid bodies
are absent in the final fully elastic solve. In contrast, long range
attachments and constraints [KCM12; MCMJ17] create additional
constraints that must be solved in addition to those of the fully
elastic system.

We are also inspired by the concept of adaptive rigidification
[MKWL22], which proposes that non-deforming parts of the simu-
lation can be automatically discovered and adaptively transformed
into rigid bodies on the fly. This technique is specifically tailored
to Newton-Raphson solvers for standard finite element simulation,
where the involved global linear systems of equations are signifi-
cantly reduced by substituting elastic degrees of freedom with low-
dimensional rigid motions. Unfortunately, the original adaptive
rigidification algorithm is unsuitable to the XPBD framework,
which explicitly ignores the problem’s Hessian matrix needed for
the oracle. As the assembly of such matrix is costly, we instead

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



A. Mercier-Aubin & P.G. Kry / A Multi-layer Solver for XPBD 3 of 11

propose an assembly-less method benefiting from many advantages
of adaptive rigidification, without the need for an oracle.

Instead of approximating a simulation using coarsening methods
like Delaunay remeshing [AD99], our proposed method is more
similar to the work of Müller [Mül08]. Our resolutions are based
on the current state of the simulation and its interactions with
the environment, which is likewise similar to adaptive rigidifica-
tion [MKWL22] but without the need of an oracle. This allows
us to use a single unified model for all of our resolutions without
resorting to the more involved geometric, algebraic, and func-
tional hierarchical constructions of existing multigrid methodolo-
gies [MZS*11; Gui93; SVJ15]. Because we propose a fully-fledged
iterative solver instead of approximating motions as rigid, we
avoid contact handling problems like those described by Mercier-
Aubin et al. [MK23] that would otherwise surface from the use
of an oracle. Our approach instead speeds up the XPBD method
by efficiently creating long-range propagation through a variety
of rigid patterns, and without the need for domain knowledge.
Much like the work of Barbié et al. [BRL15], our systems of
different resolutions will be generated automatically. Rather than
using refinement, our layers are simplifications of a fine model
without any change to the geometry. As such, our method is not
subject to the problems that would otherwise surface in subdivision
methods.

3. Standard XPBD

We briefly review the original XPBD method for the relevant
information and refer to the original paper for the details. Following
Macklin et al. [MMC16], we start from the discretized formulation
of Newton’s equations of motion

M

(
xxxt+1−2xxxt + xxxt−1

h2

)
=−∇UT (xxxt+1), (1)

where U(xxx) is an energy potential, xxx is a vector of positions
with superscript denoting the time step, M is the lumped mass
matrix, and h a time step size. From a vector of constraints C and
compliance block diagonal matrix α, we obtain the forces

−∇xxx UT (xxx) =−∇CT (xxx)α−1C(xxx), (2)

of our system. In typical XPBD fashion, this is solved using the
approximate linearized constraint formulation of the system.

In XPBD, we first step the vertices in time using the symplectic
Euler method. We start by updating the velocities, and then the
positions

ẋxx← ẋxx+hM−1 fff , (3)

xxx← xxx+hẋxx, (4)

of each elastic particle due to force fff . The solver uses the standard
XPBD Gauss-Seidel-like updates, which includes a compliance
term α = α

h2 . With the Lagrange multipliers λ first initialized to
zero, we iteratively solve for incremental updates

∆λ j =
−C j(xxx)−α jλ j

∇C j(xxx)M−1∇CT
j (xxx)+α j

, (5)

for constraint j. We then convert the ∆λ j impulse updates into
position updates

∆xxx = M−1∇C(xxx)T
∆λ j. (6)

We use the Saint Venant-Kirchoff constitutive model expressed
with Voigt notation [Cet23; SLM06] as our elastic potential. As
such, our constraints are the lower triangular entries of the strain
tensor E = 1

2 (F
TF− I), thus, a vector of 6 constraints in 3D (or a

vector of 3 constraints in 2D). We define the per-element blocks of
the compliance matrix as

αe =


ζ+2µ ζ ζ 0 0 0

ζ ζ+2µ ζ 0 0 0
ζ ζ ζ+2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ



−1

, (7)

where ζ and µ are the first and second Lamé parameters. We must
preserve the coupling of constraints due to the off diagonals of the
upper-left of αe. This requires a solve such that the denominator
of Equation 5 forms the left-hand side matrix and the numerator
becomes the right-hand side vector. For each element, we solve the
set s of coupled constraints as a 3-by-3 system (or 2-by-2 for 2D
elements),(

∇Cs(xxx)M−1∇CT
s (xxx)+αss

)
∆λs =−Cs(xxx)−αssλs. (8)

For the uncoupled constraints, i.e., corresponding to the lower right
block of coefficients of Equation 7, we simply use the standard
XPBD update from Equation 5.

For rigid bodies, the steps are similar [MMC*20]. We use
symplectic Euler to step each rigid body’s linear velocities and
center of mass with Equation 3 and Equation 4. We also need to
update each rigid body’s torques τ, angular velocities ω ∈ R3, and
rigid body rotation R ∈ SO(3) as

τ←r× f , (9)

ω←ω+hI−1(τ−ω× Iω), (10)

R←ehω̂R, (11)

where I ∈ R3×3 is the inertia tensor and ω̂ is the skew-symmetric
cross product matrix. The matrix exponential provides the rotation
update from the angular velocity vector and time step size, and is
computed using the Rodrigues’ formula [MSZ94].

Thus, the position of each vertex xxxi making up rigid body r has
position

xxxi = Rr rrri + xxxr, (12)

that is, they can be computed from the properties of rigid body r,
with rotation Rr, center of mass xxxr, where rrri specifies the location
of vertex xxxi in the local frame of the rigid body.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



4 of 11 A. Mercier-Aubin & P.G. Kry / A Multi-layer Solver for XPBD

3.1. Graph Coloring

Figure 2: Graph
coloring example.

We find independent constraints using graph
coloring. While minimal graph coloring is
a difficult problem, it is often reasonable to
precompute a greedy graph coloring [FP15] by
simply assigning each element a color unas-
signed to shared degrees of freedom from a set
of colors. In Figure 2, we show an example of
mesh graph coloring. We run constraints of the
same color in parallel.

When using partially rigid layers, the rigid bodies create distant
coupling, hindering parallelization, however we note that each rigid
body is independent from the others, otherwise they would be
merged together. Therefore, it is reasonable to solve the rigid body
constraints in parallel for the different rigid bodies. Because the
constraints on a single rigid body are coupled, we solve them in a
Jacobi style [MMCK14], while the rest of the constraints are solved
in a Gauss-Seidel like fashion similar to standard XPBD.

3.2. XPBD Elastic and Rigid Coupling

In our rigid-elastic XPBD implementation, the coupling is not
implicit. The elastic element update does not take into account the
rigid bodies within the mesh. This creates a discrepancy between
the rigid body and elastic body views of the position of vertices that
are on the boundaries between rigid and elastic regions. We couple
both views via an equality constraint similar to that of Müller et
al. [MMC*20], that is, for vertex xxxi on the boundary with rigid
body r we have

Ci(xxx) = ∥xxxi− (Rr rrri + xxxr)∥2, (13)

∆λi =
−Ci(xxx)−αiλi

wi +
1
mi

+αi
, (14)

where mi is the mass of the elastic vertex, wi is the generalized
inverse mass of the vertex in the rigid body, and ᾱi = 0 to specify a
hard constraint and preserve the rigid body boundary. We compute
the generalized inverse mass as

wi =
nC
mr

+(rrrg
i ×ddd)T I−1(rrrg

i ×ddd), (15)

where the numerator of the first term accounts for mass split-
ting [TBV12] with nC being the number of constraints affecting
the rigid body. Here, the vector rrrg

i = Rr rrri points from the rigid
body center of mass to the constrained vertex in the global frame,
and ddd is the normalized direction of vector xxxi−(Rr rrri+xxxr), i.e., the
correction direction for the equality constraint.

We get a valid coupling when the boundary vertices match the
rigid body surface. We use a modified position update similar to
that of Müller et al. [MMC*20] except that instead of working with

two rigid bodies we update the elastic particle and a rigid body,

ppp = ∆λddd, (16)

∆xxxi =
ppp

mi
, (17)

∆xxxr =−
ppp

mr
, (18)

∆ωr =−
1
h

I−1(rrrg
i × ppp). (19)

Some iterations feature strongly coupled constraints, but quater-
nion multiplications are not commutative, hindering constraint
parallelization. So typical XPBD simulations approximate quater-
nion multiplications as commutative sums with the assumption of
infinitesimal time steps (e.g., as done in Kalman filters [MYB*01]).
In Equation 19, we instead use a Jacobi style parallel accumulation
of angular velocities for dependent constraints on rigid bodies
[BYM05], which offers the same benefits. Commutativity simpli-
fies our constraint solves by allowing the computation of all rigid
body boundary constraints simultaneously.

After solving all the boundary constraints of a rigid body in
parallel, we update the rotation using Equation 11 from the accu-
mulated change of angular velocity. We then update the relevant
particle positions of a rigid body with respect to the new rotation
and center of mass. We solve the rigid body constraints last,
therefore we only update their vertex positions once per iteration.

3.3. Multi-Layer Method For XPBD

Our method has the nice property of allowing natural generation of
multiple resolutions on the fly without remeshing by using adap-
tive rigidification concepts. Because the adaptive layers preserve
the mesh vertices, the coarsening and refinement operations are
intuitive. In the context of this multi-layer solver, we define coarse
as a geometric model with more elements simulated as rigid, and
fine as a model with more elastic elements. We first need a sorting
process to determine the priority of element rigidification, e.g.,
sorting elements by strain rate. Then we gather elements into rigid
bodies incrementally by inserting elements in the given order.

3.3.1. Rigidification

In the work of Mercier-Aubin et al. [MKWL22], the rigidification
process consists of monitoring the strain rate computed as a finite
difference

Ė =
Et −Et−1

h
, (20)

to detect non-deforming elements at each time step. This is com-
patible with any per-element strain measure E like the Green
strain. While the adaptive rigidification method uses the strain
rate to determine non-deformation, we use it to generate problems
of different sizes to approximate the solution of the fully elastic
model.

3.3.2. Hierarchy generation

We create the resolutions of a multi-layer solver using strain-rate
dependent rigidification patterns. We build the hierarchies prior
to the solve, from fine to coarse, by inserting the elements to be

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



A. Mercier-Aubin & P.G. Kry / A Multi-layer Solver for XPBD 5 of 11

Algorithm 1: INCREMENTALMERGING

input : Sorted elements grouped by layer, fine to coarse
output: Connectivity of layers

1 Initialize union-find structure u[e] =−1 for all elements e
2 Initialize claimed vertices v.claimed =−1 for all vertices v
3 foreach layer l do
4 foreach uninserted element e of layer l do
5 u[e]← e
6 foreach vertex v of element e do

// find returns -1 when the input has no root
7 s← u.find(v.claimed) // with path compression
8 if e ̸= s∧ s ̸=−1 then
9 u[e]← s

10 end
11 v.claimed← e
12 end
13 end
14 L[l]← u // snapshot of u provides connectivity of layer l

15 end

treated as rigid, increasing in strain-rate order, into a disjoint set.
This is efficient due to path compression and the use of contiguous
memory [TvL84]. Construction of each coarser layer includes the
previously rigid elements from the past layer (continuing with the
same disjoint set) as shown in Figure 3.

A⊇ B⊇C

CBA

Figure 3: Different incremen-
tal rigid patterns created from
strain-rate insertion.

Initially the vector containing
our disjoint set is initialized with
all entries set to -1. This vector has
a size equivalent to the number of
elements. On element insertion, a
new set is created at the index of
the inserted element, pointing to
itself as its root. We then verify
if the vertices of the element are
already part of a set. When a rigidifying element is vertex-adjacent
to existing rigid sets, we merge the sets. We do path compression
when the disjoint-set function find is called. Because we are only
ever inserting one new element at a time, the computation time to
find the connectivity remains linear. Therefore the algorithm has
a computation upper bound tied to the sorting algorithm rather
than the creation of components. We do a single pass over the
elements to generate the hierarchies as shown in Algorithm 1.
Unlike adaptive rigidification, we do not need to handle hinges as
the partially rigid layers only serve as useful intermediate models.
As such, at a given layer, if two rigid bodies share a single vertex
we merge them into a single rigid body.

This type of insertion allows us to incrementally update the
connected components that will form rigid bodies in each resolu-
tion. While inserting elements, we keep a copy of the connected
components for each slice of a predetermined percentage of all
elements. After building these models of the system at different
resolutions, we can switch layers freely, using refinement and
coarsening operations (see Figure 4). Here, coarsening consists of
removing the elastic constraints of the elements that are rigid in

refinementrefinement

coarseningcoarsening

Figure 4: Example of a sequence of layers with precomputed
rigidification patterns. The solver iterates through the different
layered resolutions using refinement operations to add elasticity
during the solve.

the coarse layer, and adding extra coupling constraints on the new
rigid boundary. In contrast, refinement queries all the current vertex
positions from rigid body properties, updates boundary constraints,
handles residual velocities, and reintroduces elasticity constraints
to newly elastic elements. We introduce residual velocities in
Section 3.4.

3.4. Iterating Through Layers

Doing a symplectic step before projecting the constraints would
lead to inflated elements because the particles of an element
move on straight lines before the first rigid layer on rotational
motions. This would lead to inaccurate shapes for rigid bodies and
hinder convergence. Instead we progressively step the velocities by
depleting them over many layers using residual velocities.

Residual velocities are leftover internal elastic velocities inside
of rigid bodies. Initially the residual velocities replace the velocity
update for the entire system. Rigid body angular and linear veloc-
ities are computed from the per-particle residual velocities vvvi. On
layer switch, we must compute the new rigid body properties from
the vertices of rigid body r,

mr = ∑
i∈r

mi, (21)

xxxr =
1

mr
∑
i∈r

mixxxi, (22)

ẋxxr =
1

mr
∑
i∈r

mivvvi, (23)

rrri = xxxi− xxxr, (24)

Ir = ∑
i∈r

mir̂rr
T
i r̂rri, (25)

ωr = I−1
r ∑

i∈r
mirrri× (vvvi− ẋxxr). (26)

These values remain fixed throughout the solver iterations of the
layer. Hence, we compute the relative positions rrri once per layer.
Throughout the solve, We let xxxt+1

i be the current approximation of
the position vertex i at the next time step (it is initialized to xxxt

i),
and xxxi we use to denote the position of the vertex at the beginning
of the solve of the current layer. For vertices that are part of rigid
bodies, the layer solve steps their positions with rigid motion. That
is, we obtain a rotation update Rr by stepping the rigid bodies, and
vertices that are part of the body have their positions computed
based on the rigid body state (Equation 12). At this point, the vertex
velocities for this rigid motion can be computed as 1

h (xxx
t+1
i − xxxi),

but there can still be non rigid velocities in the residual velocity
vvvi. Thus, we rotate the current residual and subtract the current

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



6 of 11 A. Mercier-Aubin & P.G. Kry / A Multi-layer Solver for XPBD

velocity to update the residuals, i.e.,

vvvi← Rrvvvi−
1
h
(xxxt+1

i − xxxi). (27)

The process of updating residuals throughout the layers continues
until the elements are solved as elastic in the final iterations. Thus
each layer has less residual velocities to rigidly step as they are
depleted through rigid body motions. To be clear, it is only vertices
that are part of rigid bodies that have residual velocities, while
residual velocities are zero (depleted) for vertices that are stepped
elastically.

Note that the residual velocities must be rotated in Equation 27
because they are unstepped velocities at time t while the finite
difference of particle positions are rigidly stepped velocities at
time t + 1. In the case of a purely rigid motions of a spinning
elastic body in equilibrium, these velocities exactly cancel out.
This is because the initial residual velocities are exactly a rigid
motion (the previous step velocities, which are computed using
finite differences at the end of each simulation step in XPBD).

Because rigid bodies move during the symplectic steps, we rotate
the residual velocities to match the rigid body frames and preserve
the inner elastic velocities. The constraint solves also change the
rigid body positions and orientations, which requires a rotation
update to the residual velocities before changing layers where ∆ωr
is the change in angular velocities due to constraint solves.

This modification to XPBD requires only minor changes around
the solver, making it compatible with most existing frameworks.
This can be seen in Algorithm 2.

3.5. Contact Handling

To handle contacts, we use penalty constraints

Cc(xxx) = min(0,dddc · (pppc− xxxc)), (28)

for each vertex xxxc in contact, and correct the interpenetration at
contact pppc with normal dddc. We set the compliance parameter α to
10−4, which is the value recommended in the original XPBD work.
The constraint is treated in a consistent way, regardless if the vertex
xxxc is part of a rigid body or an elastic element.

For a given layer, all contacts on elastic vertices are independent
and solved in parallel. We find the constraint Lagrangian update
using Equation 5. All contacts on rigid vertices are solved using
the same procedure as Section 3.2, but with the elastic particle in
this case being replaced with an infinite mass contact position pppc,
and the constraint direction being the contact normal. This means
that contacts are often solved as both rigid and elastic, during a
single time step.

As proposed by Müller et al. [MMC*20], we handle restitution
after the solve with a velocity update

∆ẋxxc = nnnc(min(−ϵnnnc · ẋxxc,0)−nnnc · ẋxxc), (29)

where ϵ is a restitution parameter, and nnnc is the contact normal. As
this is a post-solve operation, we consider the soft body contacts
as fully elastic and run this operation in parallel as independent
contacts.

Algorithm 2: MULTI-LAYERXPBD
input : Position vector xxxt

Velocity vector ẋxxt
Step size h
External forces vector fff ext

output: Positions xxxt+1 and velocities ẋxxt+1 after stepping
1 xxxt+1 = xxxt

2 vvv← ẋxxt +hM−1 fff ext // residual velocity initialization
3 L← INCREMENTALMERGING // Algorithm 1
4 foreach layer l ∈ L do
5 foreach newly elastic vertex i of layer l do
6 xxxi← xxxt+1

i // vertex at the start of the layer

7 xxxt+1
i ← xxxt+1

i +hvvvi // step with residual velocity

8 end
9 foreach rigid body r in layer l do

10 ωr, ẋxxr, Ir,Mr←RIGIDPROPERTIES(l,vvv) // Section 3.4
11 Rr,xxxr←STEPRIGIDBODIES(ωr, ẋxxr) // Section 3
12 foreach vertex i of each rigid body r do
13 xxxt+1

i ← Rr rrri + xxxr // Equation 12

14 vvvi← Rrvvvi− 1
h (xxx

t+1
i − xxxi) // Equation 27

15 end
16 end
17 foreach iteration for layer l do
18 ∆ωr,xxxt+1←SOLVECONSTRAINTS

19 end
20 foreach rigid vertex i of layer l do
21 vvvi← eh∆ω̂r vvvi // rotate residual velocities
22 end
23 end
24 ẋxxt+1← 1

h (xxx
t+1− xxxt)

25 ẋxxt+1←RESTITUTIONUPDATE(ẋxxt+1) // Equation 29

3.6. Layer-Stop Criterion

Solving constraints in a partially rigidified mesh can lead to stagna-
tion if the remaining error is located inside of rigidified elements.
Implementing a stop criterion based on error improvement can
enhance speed, at the cost of the constant-time property of our
solver. Because the first few steps of XPBD solvers often lead to
an increase in residual error, we activate this feature only after
observing the first decrease in constraint residual error

∥C+αλ∥. (30)

When the change in constraint residual is near zero (below 1e-8)
for an iteration, we switch directly to the next layer in the sequence.
This allows the solver to quickly switch to the fully elastic layer.

4. Results

We evaluate our method on different fronts to develop the intuition
on how to tune the parameters of our multi-layer solver and to
validate our various hypotheses on the behaviour of the solver.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



A. Mercier-Aubin & P.G. Kry / A Multi-layer Solver for XPBD 7 of 11

2 6 8/0 4 8

Elastic Iterations

0

0.25

0.5

0.75

1

Elastic
Strain rate
Stretch
Random
Vertical Stripes
Horizontal Stripes

R
el

at
iv

e 
R

es
id

ua
l

Layer Iterations

{ {
Figure 5: Comparison of convergence per coarsening pattern: On
the left the plot shows convergence including the reduced iterations,
while on the right, we see the convergence on the fully elastic layer.
The vertical lines represent layer switches.

4.1. Choice of Pattern

The choice of an adequate rigid pattern is critical to efficiently
propagate motions. In Figure 5 we compare orders of insertion
into the disjoint set, leading to different rigid patterns. Our tests
include insertions in random order, strain-rate based, stretch-based,
and vertical or horizontal stripes. We note that the stretch-based
ordering using the eigenvalues of M−1K is simply here for com-
parison purposes as it is an expensive measure due to the assembly
of the stiffness matrix and eigenvalue decomposition. The strain-
based approach provides similar convergence rates to the stretch-
based approach, albeit at a much cheaper cost. The random patterns
sometimes lead to good convergence, but are unreliable and just as
often lead to worse performance. The stripe patterns correspond
to cases where an animator has domain knowledge for how a
complex mesh would deform. That is, prior specification of layers
may potentially be useful in niche applications. Hence, we suggest
using strain-rate based ordering for the insertion of elements in the
disjoint set to generate the layers. We note that the error sometimes
increases on layer switch, which is not unexpected because of the
stepping of residual velocities in the system on layer switch.

4.2. Choice of Layer Group Sizes

Because large deformations are more likely to impact global
simulation than tiny elastic vibrations, we suggest that starting with
more aggressively rigidified layers first is more likely to lead to
faster convergence than coarsening after spending iterations on a
fine resolution solve. Hence, we always start our test from rigid
to elastic. Likewise, there are different ways to select the change
in rigidification group sizes per layer. In Figure 6 we compare
different types of layer selection for a standard cantilever example.
We break the elements into groups with an equal number of
elements in each such that the number of rigid elements across
the different layers changes linearly. We try starting rigid and

2 6 10 14
Iterations

0

0.2

0.4

0.6

0.8

1

Linear

Logarithmic

R
el

at
iv

e 
R

es
id

ua
l

Figure 6: Linear or logarithmic: choosing linear changes between
the size of layer groups lead to better convergence compared to
logarithmic halving group size for this cantilever example.

increasingly elastifying elements with constant size jumps of 25%
rigidification. We also test halving the number of elements rigid for
each layer, starting at 100% rigidification and ending at around 12%
before going fully elastic. The logarithmic approach underperforms
due to the change in group sizes being too steep initially, missing
the opportunity to propagate important rigid motions.

We note that steps with purely rigid motions can instantly
terminate early as the symplectic stepping of rigid bodies generate
low error solutions before solving the elastic constraints. We show
this phenomenon in Figure 9a.

4.3. Number of Layers

For each layer we must build the current rigid body and compute
the properties like the rotation and center of mass. As such, there
is a small linear overhead over rigid bodies on layer switch.
Switching between many small rigid layer group sizes with a low
number of iterations could hinder performances. Hence, choosing
an appropriate number of layers is important.

A case-by-case selection can allow optimal performances. For
instance, if we know that 30% of the elements are stiffer, like
the rim of a wheel, then that proportion could be included in the
layers. A single initial 100% layer is only a good start for scenes
without pinned vertices to instantly propagate global rigid motions
(otherwise, with pinned vertices, the fully rigid layer does not move
and provides no benefit). In Figure 7 we show the cantilever test
with different numbers of layers. Because the cantilever is pinned,
we start after the first reduction in percentages. We also double the
number of iterations done per layer. For instance, the 50% plot does
one iteration in the layer 50%, while the 33% plot does 1 iteration in
the layer 66% and 2 in the layer with 33% rigidification. Because
the plot for the 10% decrease in group size has too many layers
to double the iteration count, we evenly distribute the computation
using 2 iterations per layer.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



8 of 11 A. Mercier-Aubin & P.G. Kry / A Multi-layer Solver for XPBD

4 8 12 16 20
Iterations

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
R

es
id

ua
l

50%
33%
20%
10%

1

Figure 7: Test of the impact of the layer size in the cantilever
scene for linearly distributed layers. The cross markers show the
iterations where layer switches happen.

R
el

at
iv

e 
R

es
id

ua
l

4 8 12 16 20
Iterations

0

0.2

0.4

0.6

0.8

1
Equal
Doubling
Halving

1

Figure 8: For the cantilever example, increasing the number of
iterations as we elastify the model yields the best performances.
The cross markers show layer switches.

4.4. Number of Iterations per Layers

For more aggressively rigidified layers, it is reasonable to assume
that fewer iterations are needed, because the problem is effectively
smaller. Likewise, doing too many iterations in any partially rigidi-
fied layer can lead to convergence plateaus. In Figure 8, we explore
different iteration numbers per layer to validate our hypothesis.
In our test, we use equal number of iterations (6 per rigid layer),
increasing iterations by doubling the number of iterations per layer,
and decreasing iterations by halving the number of iterations per
layer. We notice how the doubling approach outperforms the other
by doing less iterations in aggressive layers, while spending more
time in finer layers.

4.5. Example Simulations

We designed challenging test scenes to evaluate the performances
of our method, featuring varying degrees of deformations and
contacts. Figure 9 shows our example models and compares the
run times of our approach to XPBD with histograms of the solve
times necessary to achieve a desired amount of error for each time
step in a typical simulation trajectory.

We run our experiments on CPU, with efforts made for paral-
lelization of the code using vectorized MATLAB code. Our tests
use relative measures so as to provide a fair evaluation of the
performances. While our current implementation could be ported to
GPU, modifications are necessary to adapt the dynamic nature (e.g.,
problem sizes) of the method. A compiled language could also
provide performance improvement especially for the computation
of constraint gradients.

While our solver offers ground truth solutions, the difference in
convergence and constraint error distribution can lead to different
behaviors when compared to a standard XPBD solve. We note that
the standard XPBD method can introduce error due to the linear
discretization of impulses, leading to inflation during rigid motions.
This is not the case in our solver when using a fully rigid first
layer, as demonstrated by the spinning box shown in Figure 9a.
The simulation of a spinning box instantly terminates because the
rigid motions are solved accurately in the symplectic step of the
first layer.

In Figure 9b we notice two different distributions due to the fast
solve of purely rigid motions. Because of the imprecision of elastic
simulations, we can see a divergence in the simulations. Our solver
preserves the purely rigid motions in this wheel example much like
it does in the spinning box example.

Our solver can speed up contact heavy scenes like the pills
machine of Figure 9c. Due to improved propagation, our method
consistently yield better performances even in a contact heavy
scene. We note that performances could be further improved by
analyzing the residual error locally instead of globally, allowing
early stop for various independent regions like individual pills.

Even in active scenes like Figure 9d, motions can often be
represented as a set of rigid body motions, leading to a handful
of nearly free time steps and overall cheaper solves. A simpler
example with global deformation is shown in Figure 9e where a box
is stretched and released, providing no undeforming region. Even in
this fully deforming scene, the residual velocity solver outperforms
the elastic simulation at all time. Likewise, in Figure 9f, global
deformation in wildly diverging directions lead to adequate rigid
body formation, and ultimately an enhancement in performances.
In both cases, the simulation benefits from the rigid motions of the
first layers, propagating information to distant elements similar to
long-range constraints.

Much like adaptive rigidification, our algorithm shows increased
benefits when used with finer meshes. For instance, while sim-
ulating a 3 by 1 box stretch horizontally by 10% before being
released, we see that refining the model increases the proportion
of computation time saved. In Table 1, we show the percentages
of improvement for different resolutions of this scene. We also
monitor the proportion of time that the sort and the connected

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



A. Mercier-Aubin & P.G. Kry / A Multi-layer Solver for XPBD 9 of 11

XPBD
Ours

0 0.2 0.4 0.6
Time (s)

0

100

200

300

Fr
am

es

(a) Spinning Box

0 0.1 0.2 0.3
Time (s)

0

100

200

300

Fr
am

es

XPBD
Ours

(b) Wheel

XPBD
Ours

0 0.5 1 1.5 2 2.5 3
Time (s)

200

600

1000

1400

1800

Fr
am

es

(c) Pills

0.45 0.55 0.65 0.75
Time (s)

0

100

200

300

400

Fr
am

es

XPBD
Ours

(d) Octopus

XPBD
Ours

0.26 0.28 0.3 0.32 0.34
Time (s)

0

40

80

120

160
Fr

am
es

(e) Inflated Box

0.072 0.076 0.08 0.084
Time (s)

0

20

40

60

80

100

Fr
am

es

XPBD
Ours

(f) I-Shaped

Figure 9: Histograms of wall clock time to simulate a frame with a stop criterion of 90% improvement in residual error for the frame
compared to the initial residual of the elastic simulation. In all these various examples, we see improvements in performance.

Table 1: Comparison across resolutions. For the simulation of a
box stretched horizontally by 10%, the proportion of time taken
sorting and computing connected components is minimal, while the
overall performance improvement in comparison to the full elastic
solve becomes large at higher resolution.

Elements 651 1550 3304
Sort and connected components 0.01% 0.017% 0.02%
Performance improvement 0.1% 5.8% 11.93%

components occupy in the solve. We note that while it is not
currently a bottleneck, scenes featuring very large numbers of
elements would benefit from parallelization of this algorithm.

Using the octopus, we also evaluate scalability across stop crite-
ria in Figure 10. We see that the benefits of using the multi-layer
method becomes more apparent for higher residual-reduction stop
thresholds. Obviously solving the system more precisely requires
more time, but we note that the performance gain increases as we
raise the improvement percentage threshold.

5. Discussion and Limitations

Our implementation comes with the same drawbacks as its overar-
ching method. Based on XPBD, it suffers from some of the same
convergence issues. While our method does improve convergence
throughout our examples, the worst case scenario remains in the
same order of magnitude as the original XPBD method. This

0.2 0.3 0.4 0.5 0.6
0

2000

4000

0.2 0.3 0.4 0.5 0.6
0

2000

4000

0.2 0.3 0.4 0.5 0.6
Time (s)

0

2000

4000

Fr
am

es

XPBD
Ours

70%

80%

90%

Figure 10: In the octopus scene, the gap between the multi-
layer and XPBD solvers in terms of computation time increases
proportionally to precision.

happens when the solver hits a plateau for many iterations without
using an early stop for the layer. However, our method also makes
the generation of long range constraints trivial by not requiring any
domain knowledge, and adapting itself to the current environmental

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



10 of 11 A. Mercier-Aubin & P.G. Kry / A Multi-layer Solver for XPBD

inputs. Likewise, our method can propagate contacts efficiently by
treating them as both elastic and rigid while we iterate through the
layers. For rigid motions, our solver instantly reduces the error up
to relevant numerical accuracy making the simulations efficient,
while retaining ground truth accuracy.

Our method uses concepts similar to adaptive rigidification for
the choice of layers, but without an oracle. As such the last layer
must always be elastic to generate good strain rates at the next time
step. Future work could create an oracle for XPBD simulations that
would render this method compatible with the approximate simu-
lations of adaptive rigidification, further improving the speedups
when accuracy is not critical. Because XPBD benefits from not
assembling the system’s Hessian matrix, the original oracle of
adaptive rigidification is incompatible with such framework. We
theorize that an alternative oracle could be to do elastic iterations
first, then proceed with rigidified parts, but this would likely be
subject to localized propagation issues.

Likewise, the current implementation does not include co-
dimensional shell simulations. Such simulation requires extra care
for the bending components [MK23]. It is not obvious that locking
bending angles would yield good first steps in the partially rigid
layers. A potential alternative could be to only use multi-layers on
the 2D projection of the shells, leaving the bending components
fully simulated.

There are potential opportunities to parallelize the union-find
connected component builder [GPP*14; CNS*18]. Likewise, we
use a standard sorting algorithm, which could be parallelized using
forms of radix parallel sorts. Furthermore, we do not need a full
sort. That is, the grouped elements at a fine layer do not need
to be sorted and are only expected to have lower strain rate than
those elements in the group at the next coarser layer. Nevertheless,
the sort and union-find are not the current bottlenecks of our
implementation.

While early stops allow fast simulations of deformables, setting
a constant number of layers and iterations can have potential
uses for real time applications where constant time solves are
important. With our simulator, it is easy to allocate a constant
amount of resources for elasticity and still benefit from improved
convergence. This is an important feature for real-time application
as resources are often limited.

Our method shares similarities with multigrid methods, which
would make the introduction of a v-cycle pattern intuitive, starting
elastic to rigid and back to elastic. However, such pattern lose the
benefits of residual velocity layers, and the possibility to instantly
terminate on rigid motions during the first iteration.

While we use strain-based energies for our elasticity, the over-
arching multi-layer solver is independent of such constraint and
could be used with other popular formulations like the stable Neo-
Hookean from Macklin et al. [MM21].

6. Conclusions

We present a multi-layer approach for the simulation of soft bodies
with XPBD. Our method converges faster than standard XPBD
by automatically generating cheap coupling similar to long-range

constraints through the use of rigid bodies. Without using a stop
criterion for layers, our solver provides an iterative solution that
offers steady performances across frames.

While iterating through coarse layers, the solver provides an
efficient propagation of information to distant elements with a
significantly reduced number of constraints to solve. We hope that
this new method will inspire the community to build upon our
work and generate novel multi-layer solvers working outside of the
typical algebraic or geometric multigrid approaches.

7. Acknowledgment

This research was funded by the FRQNT Doctoral scholarship
332127. We are grateful to the Fonds de recherche du Québec
for their resources. We acknowledge the support of the Natural
Sciences and Engineering Research Council of Canada (NSERC)
via the Discovery grant program and Alliance grant ALLRP-
570702-21 with Symgery. We likewise thank S. Andrews and Q. M.
Ton-That for their invaluable insights and feedback throughout the
development of this project.

References
[AD99] ADAMS, M. and DEMMEL, J. “Parallel Multigrid Solver for 3D

Unstructured Finite Element Problems”. SC ’99: Proceedings of the
1999 ACM/IEEE Conference on Supercomputing. 1999, 27–27. DOI:
10.1145/331532.331559 3.

[BKCW14] BENDER, JAN, KOSCHIER, DAN, CHARRIER, PATRICK, and
WEBER, DANIEL. “Position-based simulation of continuous materials”.
Computers & Graphics 44 (2014), 1–10. ISSN: 0097-8493. DOI: 10.
1016/j.cag.2014.07.004 2.

[BML*14] BOUAZIZ, SOFIEN, MARTIN, SEBASTIAN, LIU, TIANTIAN,
et al. “Projective Dynamics: Fusing Constraint Projections for Fast
Simulation”. ACM Trans. Graph. 33.4 (July 2014). ISSN: 0730-0301.
DOI: 10.1145/2601097.2601116 2.

[BRL15] BARBIÉ, L., RAMIÈRE, I., and LEBON, F. “An automatic mul-
tilevel refinement technique based on nested local meshes for nonlinear
mechanics”. Computers & Structures 147 (2015). CIVIL-COMP, 14–25.
ISSN: 0045-7949. DOI: 10.1016/j.compstruc.2014.10.008 3.

[BYM05] BELL, NATHAN, YU, YIZHOU, and MUCHA, PETER J.
“Particle-based simulation of granular materials”. Proceedings of the
2005 ACM SIGGRAPH/Eurographics Symposium on Computer Anima-
tion. SCA ’05. Los Angeles, California: Association for Computing Ma-
chinery, 2005, 77–86. ISBN: 1595931988. DOI: 10.1145/1073368.
1073379 4.

[Cet23] CETINASLAN, OZAN. “ESBD: Exponential Strain-based Dynam-
ics using XPBD algorithm”. Computers & Graphics 116 (2023), 500–
512. ISSN: 0097-8493. DOI: 10.1016/j.cag.2023.09.014 3.

[CNS*18] CHEN, JUN, NONAKA, KEISUKE, SANKOH, HIROSHI, et al.
“Efficient Parallel Connected Component Labeling With a Coarse-to-
Fine Strategy”. IEEE Access 6 (2018), 55731–55740. DOI: 10.1109/
ACCESS.2018.2872452 10.

[FP15] FRATARCANGELI, M. and PELLACINI, F. “Scalable Partitioning
for Parallel Position Based Dynamics”. Computer Graphics Forum 34.2
(2015), 405–413. DOI: 10.1111/cgf.12570 4.

[GPP*14] GUPTA, SIDDHARTH, PALSETIA, DIANA, PATWARY,
MD. MOSTOFA ALI, et al. “A New Parallel Algorithm for Two-Pass
Connected Component Labeling”. 2014 IEEE International Parallel &
Distributed Processing Symposium Workshops. 2014, 1355–1362. DOI:
10.1109/IPDPSW.2014.152 10.

[Gui93] GUILLARD, HERVÉ. Node-nested multi-grid method with Delau-
nay coarsening. Research Report RR-1898. INRIA, 1993 3.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://doi.org/10.1145/331532.331559
https://doi.org/10.1016/j.cag.2014.07.004
https://doi.org/10.1016/j.cag.2014.07.004
https://doi.org/10.1145/2601097.2601116
https://doi.org/10.1016/j.compstruc.2014.10.008
https://doi.org/10.1145/1073368.1073379
https://doi.org/10.1145/1073368.1073379
https://doi.org/10.1016/j.cag.2023.09.014
https://doi.org/10.1109/ACCESS.2018.2872452
https://doi.org/10.1109/ACCESS.2018.2872452
https://doi.org/10.1111/cgf.12570
https://doi.org/10.1109/IPDPSW.2014.152


A. Mercier-Aubin & P.G. Kry / A Multi-layer Solver for XPBD 11 of 11

[KCM12] KIM, TAE-YONG, CHENTANEZ, NUTTAPONG, and MÜLLER-
FISCHER, MATTHIAS. “Long range attachments - a method to simulate
inextensible clothing in computer games”. Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation. SCA
’12. 2012, 305–310. DOI: 10.2312/SCA/SCA12/305-310 2.

[LZBJ21] LIU, HSUEH-TI DEREK, ZHANG, JIAYI ERIS, BEN-CHEN,
MIRELA, and JACOBSON, ALEC. “Surface Multigrid via Intrinsic Pro-
longation”. ACM Trans. Graph. 40.4 (2021) 2.

[MCMJ17] MÜLLER, MATTHIAS, CHENTANEZ, NUTTAPONG, MACK-
LIN, MILES, and JESCHKE, STEFAN. “Long Range Constraints for
Rigid Body Simulations”. Proceedings of the ACM SIGGRAPH / Eu-
rographics Symposium on Computer Animation. SCA ’17. 2017. ISBN:
9781450350914. DOI: 10.1145/3099564.3099574 2.

[MEM*20] MACKLIN, M., ERLEBEN, K., MÜLLER, M., et al. “Primal/-
Dual Descent Methods for Dynamics”. Computer Graphics Forum 39.8
(2020), 89–100. DOI: 10.1111/cgf.14104 2.

[MHHR07] MÜLLER, MATTHIAS, HEIDELBERGER, BRUNO, HENNIX,
MARCUS, and RATCLIFF, JOHN. “Position based dynamics”. Journal of
Visual Communication and Image Representation 18.2 (2007), 109–118.
ISSN: 1047-3203. DOI: 10.1016/j.jvcir.2007.01.005 2.

[MK23] MERCIER-AUBIN, ALEXANDRE and KRY, PAUL G. “Adaptive
Rigidification of Discrete Shells”. Proc. ACM Comput. Graph. Interact.
Tech. 6.3 (Aug. 2023). DOI: 10.1145/3606932 3, 10.

[MKWL22] MERCIER-AUBIN, ALEXANDRE, KRY, PAUL G., WINTER,
ALEXANDRE, and LEVIN, DAVID I. W. “Adaptive Rigidification of
Elastic Solids”. ACM Trans. Graph. 41.4 (July 2022). ISSN: 0730-0301.
DOI: 10.1145/3528223.3530124 2–4.

[MM21] MACKLIN, MILES and MULLER, MATTHIAS. “A Constraint-
based Formulation of Stable Neo-Hookean Materials”. Proceedings of
the 14th ACM SIGGRAPH Conference on Motion, Interaction and
Games. MIG ’21. Virtual Event, Switzerland: Association for Com-
puting Machinery, 2021. ISBN: 9781450391313. DOI: 10 . 1145 /
3487983.3488289 10.

[MMC*20] MÜLLER, MATTHIAS, MACKLIN, MILES, CHENTANEZ,
NUTTAPONG, et al. “Detailed Rigid Body Simulation with Extended Po-
sition Based Dynamics”. Computer Graphics Forum 39.8 (2020), 101–
112. DOI: 10.1111/cgf.14105 2–4, 6.

[MMC16] MACKLIN, MILES, MÜLLER, MATTHIAS, and CHENTANEZ,
NUTTAPONG. “XPBD: Position-Based Simulation of Compliant Con-
strained Dynamics”. Proceedings of the 9th International Conference on
Motion in Games. MIG ’16. 2016, 49–54. ISBN: 9781450345927. DOI:
10.1145/2994258.2994272 2, 3.

[MMCK14] MACKLIN, MILES, MÜLLER, MATTHIAS, CHENTANEZ,
NUTTAPONG, and KIM, TAE-YONG. “Unified particle physics for real-
time applications”. ACM Trans. Graph. 33.4 (July 2014). ISSN: 0730-
0301. DOI: 10.1145/2601097.2601152 4.

[MSZ94] MURRAY, RICHARD M., SASTRY, S. SHANKAR, and ZEXI-
ANG, LI. A Mathematical Introduction to Robotic Manipulation. 1st.
USA: CRC Press, Inc., 1994. ISBN: 0849379814 3.

[Mül08] MÜLLER, MATTHIAS. “Hierarchical Position Based Dynamics.”
Vol. 8. Jan. 2008, 1–10. DOI: 10.2312/PE/vriphys/vriphys08/
001-010 2, 3.

[MYB*01] MARINS, J.L., YUN, XIAOPING, BACHMANN, E.R., et al.
“An extended Kalman filter for quaternion-based orientation estimation
using MARG sensors”. Proceedings 2001 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems. Expanding the Societal Role
of Robotics in the the Next Millennium (Cat. No.01CH37180). Vol. 4.
2001, 2003–2011 vol.4. DOI: 10.1109/IROS.2001.976367 4.

[MZS*11] MCADAMS, ALEKA, ZHU, YONGNING, SELLE, ANDREW, et
al. “Efficient elasticity for character skinning with contact and colli-
sions”. ACM Trans. Graph. 30.4 (July 2011). ISSN: 0730-0301. DOI:
10.1145/2010324.1964932 3.

[SLM06] SERVIN, MARTIN, LACOURSIÈRE, CLAUDE, and MELIN,
NIKLAS. “Interactive Simulation of Elastic Deformable Materials”.
Proceedings of SIGRAD. Jan. 2006, 22–32. ISBN: 91-85643-17-3 3.

[SVJ15] SACHT, LEONARDO, VOUGA, ETIENNE, and JACOBSON, ALEC.
“Nested cages”. ACM Trans. Graph. 34.6 (Nov. 2015). ISSN: 0730-0301.
DOI: 10.1145/2816795.2818093 3.

[TBV12] TONGE, RICHARD, BENEVOLENSKI, FEODOR, and
VOROSHILOV, ANDREY. “Mass Splitting for Jitter-Free Parallel
Rigid Body Simulation”. ACM Trans. Graph. 31.4 (July 2012). ISSN:
0730-0301. DOI: 10.1145/2185520.2185601 4.

[TKA23] TON-THAT, QUOC-MINH, KRY, PAUL G., and ANDREWS,
SHELDON. “Parallel block Neo-Hookean XPBD using graph clustering”.
Computers & Graphics 110 (2023), 1–10. ISSN: 0097-8493. DOI: 10.
1016/j.cag.2022.10.009 2.

[TvL84] TARJAN, ROBERT E. and van LEEUWEN, JAN. “Worst-Case
Analysis of Set Union Algorithms”. J. ACM 31.2 (Mar. 1984), 245–281.
ISSN: 0004-5411. DOI: 10.1145/62.2160 5.

[XTL19] XIAN, ZANGYUEYANG, TONG, XIN, and LIU, TIANTIAN. “A
Scalable Galerkin Multigrid Method for Real-Time Simulation of De-
formable Objects”. ACM Trans. Graph. 38.6 (Nov. 2019). ISSN: 0730-
0301. DOI: 10.1145/3355089.3356486 2.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://doi.org/10.2312/SCA/SCA12/305-310
https://doi.org/10.1145/3099564.3099574
https://doi.org/10.1111/cgf.14104
https://doi.org/10.1016/j.jvcir.2007.01.005
https://doi.org/10.1145/3606932
https://doi.org/10.1145/3528223.3530124
https://doi.org/10.1145/3487983.3488289
https://doi.org/10.1145/3487983.3488289
https://doi.org/10.1111/cgf.14105
https://doi.org/10.1145/2994258.2994272
https://doi.org/10.1145/2601097.2601152
https://doi.org/10.2312/PE/vriphys/vriphys08/001-010
https://doi.org/10.2312/PE/vriphys/vriphys08/001-010
https://doi.org/10.1109/IROS.2001.976367
https://doi.org/10.1145/2010324.1964932
https://doi.org/10.1145/2816795.2818093
https://doi.org/10.1145/2185520.2185601
https://doi.org/10.1016/j.cag.2022.10.009
https://doi.org/10.1016/j.cag.2022.10.009
https://doi.org/10.1145/62.2160
https://doi.org/10.1145/3355089.3356486

	Introduction
	Related Work
	Standard XPBD
	Graph Coloring
	XPBD Elastic and Rigid Coupling
	Multi-Layer Method For XPBD
	Iterating Through Layers
	Contact Handling
	Layer-Stop Criterion

	Results
	Choice of Pattern
	Choice of Layer Group Sizes
	Number of Layers
	Number of Iterations per Layers
	Example Simulations

	Discussion and Limitations
	Conclusions
	Acknowledgment

